CanSISE Reports

CanSISE Deliverable 1 Report (May 2016)
CanSISE Deliverable 1 Report Final.pdf
Adobe Acrobat Document 10.6 MB
Year 4 Annual Report (December 2016)
CanSISE Y4 Annual Report.pdf
Adobe Acrobat Document 337.6 KB

Publications

CanSISE Publications 2013-2018
CanSISE 2013-2018.ris
Text Document 119.8 KB

Project Year 6 (2018)

Published 2018

  1. Auclair, G, and L. B. Tremblay, 2018: The role of ocean heat transport in rapid sea ice declines in the Community Earth System Model Large Ensemble. J. Geophysical Research: Oceans, in press.
  2. Curry, C. L., and F. W. Zwiers, 2018: Examining controls on peak annual streamflow and floods in the Fraser River Basin of British Columbia. Hydrol. Earth Syst. Sci., 22, 2285–2309, doi:10.5194/hess-22-2285-2018.
  3. Hay, S., P. J. Kushner, R. Blackport, and K. E. McCusker, 2018: On the Relative Robustness of the Climate Response to High-Latitude and Low-Latitude Warming. Geophysical Research Letters, 45, 6232–6241, doi:10.1029/2018GL077294.
  4. Kushner, P. J., and Coauthors, 2018: Canadian snow and sea ice: assessment of snow, sea ice, and  related climate processes in Canada’s Earth system model and climate-prediction system. The Cryosphere, 12, 1137–1156, doi:10.5194/tc-12-1137-2018.
  5. Mudryk, L. R., and Coauthors, 2018: Canadian snow and sea ice: historical trends and projections. The Cryosphere, 12, 1157–1176, doi:10.5194/tc-12-1157-2018.
  6. Oudar, T., P. Kushner, J. C. Fyfe, and M. Sigmond, 2018: No impact of anthropogenic aerosols on early 21st century global temperature trends in a large initial-condition ensemble. Accepted. Geophysical Research Letters.
  7. Tandon Neil F., Kushner Paul J., Docquier David, Wettstein Justin J., and Li Camille, 2018: Reassessing Sea Ice Drift and Its Relationship to Long-Term Arctic Sea Ice Loss in Coupled Climate Models. Journal of Geophysical Research: Oceans, 0, doi:10.1029/2017JC013697.

 

 

Project Year 5 (2017)

Published 2017

  1. Ambadan, J. T., A. A. Berg, W. J. Merryfield, and W.-S. Lee, 2017: Influence of snowmelt on soil moisture and on near surface air temperature during winter–spring transition season. Climate Dynamics, doi:10.1007/s00382-017-3955-8. https://doi.org/10.1007/s00382-017-3955-8.
  2. Blackport, R., and P. Kushner, 2017: Isolating the Atmospheric Circulation Response to Arctic Sea Ice Loss in the Coupled Climate System. J. Climate, 30, 2163–2185, doi:10.1175/JCLI-D-16-0257.1.
  3. Bouchat, A., and B. Tremblay, 2017: Using sea-ice deformation fields to constrain the mechanical strength parameters of geophysical sea ice. J. Geophys. Res. Oceans, 122, 5802–5825, doi:10.1002/2017JC013020.
  4. Dirkson, A., W. J. Merryfield, and A. Monahan, 2017: Impacts of Sea Ice Thickness Initialization on Seasonal Arctic Sea Ice Predictions. J. Climate, 30, 1001–1017, doi:10.1175/JCLI-D-16-0437.1.
  5. Fyfe, J. C., and Coauthors, 2017: Large near-term projected snowpack loss over the western United States. 8, 14996.
  6. Gagné, M.-È., J. C. Fyfe, N. P. Gillett, I. V. Polyakov, and G. M. Flato, 2017a: Aerosol-driven increase in Arctic sea ice over the middle of the 20th Century. Geophys. Res. Lett., doi:10.1002/2016GL071941. http://dx.doi.org/10.1002/2016GL071941.
  7. Gagné, M.-È., M. C. Kirchmeier-Young, N. P. Gillett, and J. C. Fyfe, 2017b: Arctic sea ice response to the eruptions of Agung, El Chichón and Pinatubo. J. Geophys. Res. Atmos., doi:10.1002/2017JD027038. http://dx.doi.org/10.1002/2017JD027038.
  8. Islam, S. U., and S. J. Déry, 2017: Evaluating uncertainties in modelling the snow hydrology of the Fraser River Basin, British Columbia, Canada. Hydrol. Earth Syst. Sci., 21, 1827–1847, doi:10.5194/hess-21-1827-2017.
  9. Islam, S. ul, S. J. Déry, and A. T. Werner, 2017: Future Climate Change Impacts on Snow and Water Resources of the Fraser River Basin, British Columbia. J. Hydrometeor., 18, 473–496, doi:10.1175/JHM-D-16-0012.1.
  10. Kirchmeier-Young, M. C., F. W. Zwiers, and N. P. Gillett, 2017a: Attribution of Extreme Events in Arctic Sea Ice Extent. J. Climate, 30, 553–571, doi:10.1175/JCLI-D-16-0412.1.
  11. Kirchmeier-Young, M. C., F. W. Zwiers, N. P. Gillett, and A. J. Cannon, 2017b: Attributing extreme fire risk in Western Canada to human emissions. Climatic Change, 144, 365–379, doi:10.1007/s10584-017-2030-0.
  12. McCusker K. E., Kushner P. J., Fyfe J. C., Sigmond M., Kharin V. V., and Bitz C. M., 2017: Remarkable separability of circulation response to Arctic sea ice loss and greenhouse gas forcing. Geophysical Research Letters, 44, 7955–7964, doi:10.1002/2017GL074327.
  13. Mudryk, L. R., P. J. Kushner, C. Derksen, and C. Thackeray, 2017: Snow cover response to temperature in observational and climate model ensembles. Geophys. Res. Lett., 44, 919–926, doi:10.1002/2016GL071789.
  14. Najafi, M. R., F. Zwiers, and N. Gillett, 2017: Attribution of the Observed Spring Snowpack Decline in British Columbia to Anthropogenic Climate Change. J. Climate, 30, 4113–4130, doi:10.1175/JCLI-D-16-0189.1.
  15. Shrestha, R. R., A. J. Cannon, M. A. Schnorbus, and F. W. Zwiers, 2017: Projecting future nonstationary extreme streamflow for the Fraser River, Canada. Climatic Change, 145, 289–303, doi:10.1007/s10584-017-2098-6.
  16. Sospedra-Alfonso, R., and W. J. Merryfield, 2017: Influences of Temperature and Precipitation on Historical and Future Snowpack Variability over the Northern Hemisphere in the Second Generation Canadian Earth System Model. J. Climate, 30, 4633–4656, doi:10.1175/JCLI-D-16-0612.1.
  17. Tandon, N. F., and M. A. Cane, 2017: Which way will the circulation shift in a changing climate? Possible nonlinearity of extratropical cloud feedbacks. Climate Dynamics, 48, 3759–3777, doi:10.1007/s00382-016-3301-6.
  18. Younas, W., R. W. Hay, M. K. MacDonald, S. ul Islam, and S. J. Déry, 2017: A strategy to represent impacts of subgrid-scale topography on snow evolution in the Canadian Land Surface Scheme. Annals of Glaciology, 58, 1–10, doi:10.1017/aog.2017.29

Project Year 4 (2016)

Published 2016

  1. Bichet, A., P. Kushner, and L. Mudryk, 2016: Estimating the Continental Response to Global Warming Using Pattern-Scaled Sea Surface Temperatures and Sea Ice. J. Climate, 29, 9125–9139, doi:10.1175/JCLI-D-16-0032.1.
  2. Blackport, R., and P. J. Kushner, 2016: The Transient and Equilibrium Climate Response to Rapid Summertime Sea Ice Loss in CCSM4. J. Climate, 29, 401–417, doi:10.1175/JCLI-D-15-0284.1.
  3. Dirkson, A., W. J. Merryfield, and A. Monahan, 2016: Impacts of sea ice thickness initialization on seasonal Arctic sea ice predictions. J. Climate, doi:10.1175/JCLI-D-16-0437.1. http://dx.doi.org/10.1175/JCLI-D-16-0437.1 (Accessed December 6, 2016).
  4. Gervais, M., E. Atallah, J. R. Gyakum, and L. B. Tremblay, 2016: Arctic Air Masses in a Warming World. J. Climate, doi:10.1175/JCLI-D-15-0499.1. http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-15-0499.1 (Accessed January 28, 2016).
  5. Islam, S. U., S. J. Déry, and A. T. Werner, 2016: Future Climate Change Impacts on Snow and Water Resources of the Fraser River Basin, British Columbia. J. Hydrometeor., 18, 473–496, doi:10.1175/JHM-D-16-0012.1.
  6. Kang, D. H., H. Gao, X. Shi, S. ul Islam, and S. J. Déry, 2016: Impacts of a Rapidly Declining Mountain Snowpack on Streamflow Timing in Canada’s Fraser River Basin. Scientific Reports, 6, 19299.
  7. Kirchmeirer-Young, M., F. Zwiers, and N. P. Gillett, 2016: Attribution of extreme events in Arctic sea ice extent. J. Climate, 30, 553–571, doi:10.1175/JCLI-D-16-0412.1.
  8. Kumar, S., J. L. Kinter, Z. Pan, and J. Sheffield, 2016a: Twentieth century temperature trends in CMIP3, CMIP5, and CESM-LE climate simulations: Spatial-temporal uncertainties, differences, and their potential sources. J. Geophys. Res. Atmos., 121, 9561–9575, doi:10.1002/2015JD024382.
  9. Kumar, S, F. Zwiers, P. A. Dirmeyer, D. M. Lawrence, R. Shrestha, and A. T. Werner, 2016b: Terrestrial contribution to the heterogeneity in hydrological changes under global warming. Water Resour. Res., 52, 3127–3142, doi:10.1002/2016WR018607.
  10. Kushner, P. J., and Coauthors, 2016: Assessment of Snow, Sea Ice, and Related Climate Processes in Canada’s Earth System Models and Climate Prediction Systems. University of Toronto,.
  11. Laliberté, F., S. E. L. Howell, and P. J. Kushner, 2016: Regional variability of a projected sea ice-free Arctic during the summer months. Geophys. Res. Lett., 43, 2015GL066855, doi:10.1002/2015GL066855.
  12. McCusker, K. E., J. C. Fyfe, and M. Sigmond, 2016: Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nature Geosci,. http://dx.doi.org/10.1038/ngeo2820.
  13. Najafi, M. R., F. Zwiers, and N. P. Gillett, 2016: Attribution of the spring snow cover extent decline in the Northern Hemisphere, Eurasia and North America to anthropogenic influence. Climatic Change, 1–16, doi:10.1007/s10584-016-1632-2.
  14. Sigmond, M., M. C. Reader, G. M. Flato, W. J. Merryfield, and A. Tivy, 2016: Skillful seasonal forecasts of Arctic sea ice retreat and advance dates in a dynamical forecast system. Geophys. Res. Lett., 43, 12,457-12,465, doi:10.1002/2016GL071396.
  15. Snauffer, A. M., W. W. Hsieh, and A. J. Cannon, 2016: Comparison of gridded snow water equivalent products with in situ measurements in British Columbia, Canada. Journal of Hydrology, 541, Part B, 714–726, doi:10.1016/j.jhydrol.2016.07.027.
  16. Sospedra-Alfonso, R., W. J. Merryfield, and V. V. Kharin, 2016a: Representation of Snow in the Canadian Seasonal to Interannual Prediction System. Part II: Potential Predictability and Hindcast Skill. J. Hydrometeor., 17, 2511–2535, doi:10.1175/JHM-D-16-0027.1.
  17. Sospedra-Alfonso, R., L. Mudryk, W. Merryfield, and C. Derksen, 2016b: Representation of Snow in the Canadian Seasonal to Interannual Prediction System. Part I: Initialization. J. Hydrometeor., 17, 1467–1488, doi:10.1175/JHM-D-14-0223.1.
  18. Thackeray, C. W., and C. G. Fletcher, 2016: Snow albedo feedback: Current knowledge, importance, outstanding issues and future directions. Progress in Physical Geography, 40, 392–408, doi:10.1177/0309133315620999.
  19. Thackeray, C. W., C. G. Fletcher, L. R. Mudryk, and C. Derksen, 2016: Quantifying the uncertainty in historical and future simulations of Northern Hemisphere spring snow cover. J. Climate, doi:10.1175/JCLI-D-16-0341.1. http://dx.doi.org/10.1175/JCLI-D-16-0341.1 (Accessed October 13, 2016).
  20. Williams, J., B. Tremblay, R. Newton, and R. Allard, 2016: Dynamic Preconditioning of the Minimum September Sea-Ice Extent. J. Climate, 29, 5879–5891, doi:10.1175/JCLI-D-15-0515.1.

Reports 2016

Kushner, P. J., and Coauthors, 2016: Assessment of Snow, Sea Ice, and Related Climate Processes in Canada’s Earth System Models and Climate Prediction Systems. University of Toronto.

Project Year 3 (2015)

Published 2015

  1. Ambadan, J. T., A. Berg, and W. J. Merryfield, 2015: Influence of snow and soil moisture initialization on sub-seasonal predictability and forecast skill in boreal spring. Climate Dynamics, 1–17, doi:10.1007/s00382-015-2821-9.
  2. Bichet, A., P. J. Kushner, L. Mudryk, L. Terray, and J. C. Fyfe, 2015: Estimating the anthropogenic sea surface temperature response using pattern scaling. Journal of Climate, 28, 3751–3763.
  3. Dirkson, A., W. J. Merryfield, and A. Monahan, 2015: Real-time estimation of Arctic sea ice thickness through maximum covariance analysis: Statistical sea ice thickness. Geophysical Research Letters, 42, 4869–4877, doi:10.1002/2015GL063930.
  4. Fletcher, C. G., C. W. Thackeray, and T. M. Burgers, 2015: Evaluating biases in simulated snow albedo feedback in two generations of climate models. J. Geophys. Res. Atmos., 120, 2014JD022546, doi:10.1002/2014JD022546.
  5. Gagné, M.-È., N. P. Gillett, and J. C. Fyfe, 2015: Impact of aerosol emission controls on future Arctic sea ice cover. Geophys. Res. Lett., 42, 2015GL065504, doi:10.1002/2015GL065504.
  6. Hata, Y., and B. Tremblay, 2015a: A 1.5D anisotropic sigma-coordinate thermal stress model of landlocked sea ice in the Canadian Arctic Archipelago. Journal of Geophysical Research: Oceans, 120, n/a-n/a, doi:10.1002/2015JC010820.
  7. Hata, Y., and L. B. Tremblay, 2015b: Anisotropic internal thermal stress in sea ice from the Canadian Arctic Archipelago. Journal of Geophysical Research: Oceans, 120, 5457–5472, doi:10.1002/2015JC010819.
  8. Hernández-Henríquez, M. A., S. J. Déry, and C. Derksen, 2015: Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent, 1971–2014. Environmental Research Letters, 10, 044010, doi:10.1088/1748-9326/10/4/044010.
  9. Howell, S. E. L., C. Derksen, L. Pizzolato, and M. Brady, 2015: Multiyear ice replenishment in the Canadian Arctic Archipelago: 1997–2013. J. Geophys. Res. Oceans, 120, 1623–1637, doi:10.1002/2015JC010696.
  10. Kumar, S., R. P. Allan, F. Zwiers, D. M. Lawrence, and P. A. Dirmeyer, 2015: Revisiting trends in wetness and dryness in the presence of internal climate variability and water limitations over land. Geophys. Res. Lett., 42, 10,867-10,875, doi:10.1002/2015GL066858.
  11. Mudryk, L. R., C. Derksen, P. J. Kushner, and R. Brown, 2015: Characterization of Northern Hemisphere Snow Water Equivalent Datasets, 1981–2010. J. Climate, 28, 8037–8051, doi:10.1175/JCLI-D-15-0229.1.
  12. Najafi, M. R., F. W. Zwiers, and N. P. Gillett, 2015: Attribution of Arctic temperature change to greenhouse-gas and aerosol influences. Nature Clim. Change, 5, 246–249, doi:10.1038/nclimate2524.
  13. Ribes, A., N. P. Gillett, and F. W. Zwiers, 2015: Designing Detection and Attribution Simulations for CMIP6 to Optimize the Estimation of Greenhouse Gas–Induced Warming. J. Climate, 28, 3435–3438, doi:10.1175/JCLI-D-14-00691.1.
  14. Sospedra-Alfonso, R., J. R. Melton, and W. J. Merryfield, 2015: Effects of temperature and precipitation on snowpack variability in the Central Rocky Mountains as a function of elevation. Geophys. Res. Lett., 42, 4429–4438, doi:10.1002/2015GL063898.
  15. Thackeray, C. W., C. G. Fletcher, and C. Derksen, 2015: Quantifying the skill of CMIP5 models in simulating seasonal albedo and snow cover evolution: CMIP5-simulated albedo and SCF skill. Journal of Geophysical Research: Atmospheres, 120, 5831–5849, doi:10.1002/2015JD023325.
  16. Wan, H., X. Zhang, F. Zwiers, and S.-K. Min, 2015: Attributing northern high-latitude precipitation change over the period 1966–2005 to human influence. Climate Dynamics, 45, 1713–1726, doi:10.1007/s00382-014-2423-y.

 

Project Year 1-2 (2013-2014)

Published

  1. Déry, S., H. Knudsvig, M. Hernández-Henríquez, and D. Coxson, 2014: Net snowpack accumulation and ablation characteristics in the inland temperate rainforest of the upper Fraser River basin, Canada. Hydrology, 1, 1–19, doi:10.3390/hydrology1010001.
  2. Gervais, M., J. R. Gyakum, E. Atallah, L. B. Tremblay, and R. B. Neale, 2014a: How Well Are the Distribution and Extreme Values of Daily Precipitation over North America Represented in the Community Climate System Model? A Comparison to Reanalysis, Satellite, and Gridded Station Data. Journal of Climate, 27, 5219–5239, doi:10.1175/JCLI-D-13-00320.1.
  3. Gervais, M., J. R. Gyakum, E. Atallah,, L. B. Tremblay, J. R. Gyakum, and E. Atallah, 2014b: Representing Extremes in a Daily Gridded Precipitation Analysis over the United States: Impacts of Station Density, Resolution, and Gridding Methods. Journal of Climate, 27, 5201–5218, doi:10.1175/JCLI-D-13-00319.1.
  4. Kang, D. H., X. Shi, H. Gao, and S. J. Déry, 2014: On the Changing Contribution of Snow to the Hydrology of the Fraser River Basin, Canada. Journal of Hydrometeorology, 15, 1344–1365, doi:10.1175/JHM-D-13-0120.1.
  5. Mudryk, L. R., P. J. Kushner, and C. Derksen, 2014: Interpreting observed northern hemisphere snow trends with large ensembles of climate simulations. Clim Dyn, 43, 345–359, doi:10.1007/s00382-013-1954-y.
  6. Pittana, M., and C. Haas, 2014: Comparing Sea Ice Mass Balance Buoy Snow Depth Measurements with Reanalysis and Climate Model Data. York University,.
  7. Thackeray, C. W., C. G. Fletcher, and C. Derksen, 2014: The influence of canopy snow parameterizations on snow albedo feedback in boreal forest regions: Boreal forest snow albedo feedback. Journal of Geophysical Research: Atmospheres, 119, 9810–9821, doi:10.1002/2014JD021858.

 

Reports 2014

Pittana, M., and C. Haas, 2014: Comparing Sea Ice Mass Balance Buoy Snow Depth Measurements with Reanalysis and Climate Model Data. Internal summer project summary report, York University. (Theme A, directly supported by CanSISE)

Original Proposal and Annual Reports

CanSISE Original Research Network Proposal
CanSISE Proposal 2014-12-05.pdf
Adobe Acrobat Document 690.0 KB
Year 1 Annual Report (December 2013)
CanSISE Y1 Annual Report 2013-12-01.pdf
Adobe Acrobat Document 8.7 MB
Year 2 Annual Report (December 2014)
CanSISE Y2 Annual Report 2014-12-02.pdf
Adobe Acrobat Document 213.2 KB
Year 3 Annual Report (December 2015)
CanSISE Y3 Annual Report.pdf
Adobe Acrobat Document 302.8 KB
Year 4 Annual Report (December 2016)
CanSISE Y4 Annual Report.pdf
Adobe Acrobat Document 337.6 KB

Recent Publications

Curry, C. L., and F. W. Zwiers, 2018: Examining controls on peak annual streamflow and floods in the Fraser River Basin of British Columbia. Hydrol. Earth Syst. Sci., 22, 2285–2309, doi:10.5194/hess-22-2285-2018.


Hay, S., P. J. Kushner, R. Blackport, and K. E. McCusker, 2018: On the Relative Robustness of the Climate Response to High-Latitude and Low-Latitude Warming. Geophysical Research Letters, 45, 6232–6241, doi:10.1029/2018GL077294.


Kushner, P. J., and Coauthors, 2018: Canadian snow and sea ice: assessment of snow, sea ice, and  related climate processes in Canada’s Earth system model and climate-prediction system. The Cryosphere, 12, 1137–1156, doi:10.5194/tc-12-1137-2018.


Mudryk, L. R., and Coauthors, 2018: Canadian snow and sea ice: historical trends and projections. The Cryosphere, 12, 1157–1176, doi:10.5194/tc-12-1157-2018.


Oudar, T., P. Kushner, J. C. Fyfe, and M. Sigmond, 2018: No impact of anthropogenic aerosols on early 21st century global temperature trends in a large initial-condition ensemble. Accepted. Geophysical Research Letters.


Tandon Neil F., Kushner Paul J., Docquier David, Wettstein Justin J., and Li Camille, 2018: Reassessing Sea Ice Drift and Its Relationship to Long-Term Arctic Sea Ice Loss in Coupled Climate Models. Journal of Geophysical Research: Oceans, 0, doi:10.1029/2017JC013697.